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We discuss the completeness of quantum physics (QP) from a nonrealistic view- 
point. To this end we make use of the formalized language L for QP that we 
introduced in a recent paper and show that QP is "incomplete" both in an 
intuitive sense and in a more formal logical sense. We also show that a pure state 
is not physically equivalent to the physical property which characterizes it in QP, 
and that the set of all properties whose truth value can be predicted for a physical 
object in the state S coincides with the set of all properties which are "certainly 
true" or "certainly false" in S. These results lead us to introduce a notion of 
"compatibility" between states which can be applied to the EPR experiment, in 
order to prove that no quantum paradox follows from it if our interpretation of 
states and physical properties is accepted. 

1. I N T R O D U C T I O N  

In their famous paper,  " C a n  Quan tum Mechanical  Description o f  Real- 
ity Be Considered Complete?"  Einstein, Podolski,  and Rosen (1935) (EPR)  
charged quan tum physics (QP) with being " incomplete"  in a sense which 
goes beyond the usual meaning o f  this word  in logic and epistemology;  to 
be precise, they argued f rom the analysis o f  a suitable thought-experiment  
that  an "element  o f  physical reality" could be simultaneously attr ibuted to 
some physical "quant i t ies"  which nevertheless could not  be simultaneously 
evaluated by making  use o f  the laws o f  QP. 

It  should be noted that the realistic att i tude o f  EPR in the above paper 
can be considered "weak"  (in a sense that  will be clarified in Section 3). But 
it is well known that  the E P R  argument  has stimulated the product ion o f  a 
huge a m o u n t  o f  literature on the subject; in this context, m a n y  physicists 
adopted  a " s t rong"  realistic att i tude and interpreted the EPR reasoning as 
the discovery o f  a " p a r a d o x "  in QP (Selleri, 1988), or  deduced "paradoxes"  
by further e laborat ing the E PR argument.  
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If analyzed from a semantic viewpoint, "strong" realism requires that 
every physical theory can be completely interpreted, the interpretation not 
being considered a model for the theory (Braithwaite, 1953) but, rather, a 
picture of some ontologically existing underlying reality. From this point 
of view, this philosophical attitude contrasts with a more analytical and 
nonrealistic position, according to which the language of any physical theory 
necessarily contains theoretical terms which can be interpreted on a model 
(or "intended interpretation") for making reasoning easier, but which do 
not necessarily refer to ontologically existing entities; indeed, their physical 
meaning is established by means of "correspondence rules" which associate 
derived theoretical terms with observative terms, i.e., terms interpreted on 
physical quantities (Hempel, 1965; Carnap, 1966). 

The problem of the completeness of a physical theory Y-, or the prob- 
lem of its "paradoxes, ''2 do not disappear in a nonrealistic framework, 
but receive a different formulation; in particular, the former becomes a 
problem of "semantic" rather than "ontological" completeness, and a 
thorough discussion of it would require an adequate formalization of the 
language of Y. This could be done (see Section 3) by constructing a predi- 
cate calculus L* where quantification of predicative variables be admitted, 
so that the general physical laws of Y- can be stated by means of L*. By 
making reference to this language L*, the completeness problem can be 
posed in more formal terms, and "weak" and "strong" realism can be 
adequately characterized. 

We are interested here in classical physics (CP) and QP. The construc- 
tion of L* for these theories is a major task, and we cannot tackle it now. 
This notwithstanding, we can attain some relevant results regarding the 
completeness problem by making use of the formal language L that we have 
proposed in a recent paper (Garola, 1991 ; briefly, G.91 in the following). 
Indeed, L does not completely formalize the language of CP and QP, but it 
can be seen as an "observative part" of the broader language L* that would 
be required in order to formalize these theories (i.e., L is a sublanguage of 
L* which is interpreted over the empirical domain of CP and QP). Thus, we 
can pose the completeness problem with reference to L rather than to L*, 
and it is apparent that a negative answer in the former case would imply a 
negative answer in the latter; because of this, we shall see that L is sufficient 
for our purposes in this paper. 

Let us briefly summarize our main results. We discuss in Section 2 the 
"incompleteness" of QP from an intuitive viewpoint, by making use of our 

2The term "paradox" is used here in order to indicate a result in the theory which is heavily 
counterintuitive or, more rigorously, which contradicts some epistemological requirements 
regarding the theory; a paradox must then be distinguished from an "antinomy," which is an 
internal contradiction in the theory. 
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language L and of standard quantum mechanical notions; we also show that 
physical states can be considered physically equivalent to testable physical 
properties in CP but not in QP (this result is consistent with the standard 
conception of states as "amounts of information" in QP), though every state 
can be characterized by a suitable physical property both in CP and in QP. 
Then we show in Section 3, by making use of the reformulation of the basic 
axioms of QP provided in G.91, that QP is semantically incomplete with 
respect to L in a standard sense in logic, while CP is semantically complete. 
Based on this result, we introduce a (binary) "compatibility" relation on the 
set of all states, which is used in Section 4 in order to show that no quantum 
paradox follows from the EPR experiment in our framework (it is interesting 
to note that EPR deduced the ontological incompleteness of QP by reasoning 
about their "thought-experiment," while we prove the semantic incomplete- 
ness of QP by means of general logical tools, then make use of this result 
in order to disprove the existence of paradoxes following from the EPR 
experiment). 

2. STATES AND PHYSICAL PROPERTIES 

As we have anticipated in the Introduction, in this section we intend to 
provide an intuitive treatment of the incompleteness of QP by making use 
of the formalized language that we have proposed in G.91. Our treatment 
will also put in evidence some important features of the concept of state 
in QP. 

Let us recall the essentials of our approach in (3.91. Our classical 
extended language L is a predicate calculus of the first order with: 

(i) A set X of individual variables x, y , . . . .  
(ii) A set ~ of monadic predicates. 
(iii) Standard connectives --a, ^ ,  v ,  --,, ~--~. 
(iv) Standard quantifiers 3, V. 
(v) A family (rcr),-<0.1j of "statistical quantifiers." 

The predicates in L are divided into two classes, the set 5 a of "symbols of 
states" and the set g of "symbols of effects." By adopting Ludwig's analysis 
of experimental apparatuses (Ludwig, 1983), with some differences that are 
epistemologically and mathematically important, but that will not be recalled 
here for brevity's sake, every symbol of state S~5 ~ is interpreted, intension- 
ally, as a class [ps] of physically equivalent preparing devices, or "state"; 
analogously, every symbol of effect E~g is interpreted, intensionally, as a 
class [eE] of physically equivalent dichotomic (yes-nc) registering devices, 
or "effect" (by abuse of language we will not distinguish between "symbol 
of state" and "state" or "symbol of effect" and "effect" in the following). 
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The extensions of these predicates are defined by making reference to the 
concept of "laboratory," or space-time domain in the actual world; we 
denote by I the set of all laboratories, and by I a  suitable subset of laborato- 
ries which are "statistically relevant," i.e., that contain a "large" number of 
physical objects (see G.91, Sections 1.7 and 1.8). Thus, for every i~I, the 
extension pi(S) of the state Se6e is a set which is physically interpreted as 
the set of all individual physical systems, or "physical objects," prepared in 
i by devices belonging to [p,]; similarly, the extension pi(E) of the effect 
Eeg is a set which is physically interpreted as the set of all physical objects 
in i which would yield the answer yes if tested by means of a device belonging 
to [ee]. Consequently, a set D~ is associated with every ieI that we call the 
"domain" of i and is interpreted as the set of all physical objects that are 
prepared in i by means of preparing devices; furthermore, an interpretation 
o- of the (individual) variables of L is defined as a mapping 

r ( i ,x)~Ix X.-~cri(x)~Di 

which, for every i~I, maps the variables in L into elements of D; (by abuse 
of language we call "physical objects" these elements, or the variables them- 
selves whenever an interpretation o- is understood). 

Consistently with the above interpretation of L, it can be assumed that, 
for every i~l, the set of all states induces a partition of D; [i.e., for every S, 
S'~5 r p i (S )np i (S ' )=~  whenever S#S' ,  and [ , . ) ~  pi(S)=Di]. On the 
contrary, for every E, E' sg, E#E'  does not imply that p~(E) n pi(E') = (~, 
and the set g can be partially ordered by the relation < defined as follows: 

for every E, E'sg, E<E' iff for every i~7, pi(E)c_pi(E') 

We have proved in G.91 that the poset (g, <) contains a proper sub- 
poset (gE, <), the poset of all "symbols of exact effects" (briefly, "exact 
effects"), which is a lattice and is isomorphic, under reasonable physical 
assumptions, to Mackey's (1963) lattice of questions, or Piron's (1976) lat- 
tice of propositions; hence, it is a complete, orthocomplemented, atomic 
lattice, which is distributive in CP, weakly modular, and satisfying the cover- 
ing law in QP. It follows that all elements in ge  can be associated with 
(testable) physical properties, and by abuse of language we simply call them 
"properties" in the rest of this paper. 

Let us come to the (Tarskian) concept of truth in our language. We say 
that the atomic wff S(x) is true in the laboratory i for a given interpretation 
cr of the variables iff a~(x)~p~(S). Analogously, we say that the atomic 
formula E(x) is true in a laboratory i for a given interpretation o" of the 
variables iff ~(x)~p~(E). Because of our general interpretation of L, it 
follows that S(x) is true (false) in i iff the physical object ~i(x) has (has not) 
been prepared in i by means of some preparation procedure belonging to 
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[p~] (hence, for every S e 0  ~ the truth value of the wff S(x) can be considered 
as actually known in our language whenever the interpretation cr is given); 
we briefly say in this case that "x  is (is not) in the state S"  in the laboratory 
i, leaving implicit the reference to the interpretation o'. Analogously, E(x) 
is true (false) in i iff the physical object o-i(x) would yield the answer yes 
(no) if it should be tested by means of a registering device belonging to [eel 
(because of this interpretation, for every E e r  the truth value of the wff 
E(x) can be considered assigned but not necessarily known in our language 
whenever the interpretation cr is given). Let E~r (c denotes strict 
inclusion in this paper), and let cr be such that E(x) is true (false) in i; we 
briefly say that "x  has (has not) the property E in the laboratory i"  or, 
equivalently, that "E  is true (false) in i for the physical object x," again 
leaving implicit the reference to the interpretation or. Finally, a truth value 
is assigned to all molecular and quantified wffs of L by making use of 
standard definitions in classical logic, suitably extended so that truth values 
can also be attributed to wffs containing statistical quantifiers. 

Let us consider now the completeness problem. We recall that we have 
discussed in G.91 the "breakdown of strict determinism" in QP. This break- 
down can be expressed in the present framework by saying (in absence of 
superselection rules) that for every state S (respectively, property E) there 
is at least one property E (respectively, state S) such that, for every i~L 

~j # p~(S) c~ p,(E) # pe( S) 

i.e., some physical objects in the state S have the property E, some have not 
(an example is provided in the Hilbert space model for QP by the property 
E represented by a projection PE and by a pure state S represented by a 
vector which neither belongs to the kernel nor to the range of PE). It follows 
that QP is "incomplete" in the intuitive sense that the knowledge of the state 
of a physical object x does not allow us to predict all physical properties of 
x. This result may seem trivial, but it must be stressed that in our context it 
makes sense to assign a truth value to every physical property whenever the 
physical object .'c is specified, in contrast with the canonical interpretation 
of QP provided by the Copenhagen school. 

Let us discuss the above argument in more detail. 
First, let us note that, by making use of the above definitions, a "true 

domain" g ~  and a "false domain" gi  v can be associated, whenever an 
interpretation o- of the variables is given, to every physical object xEX in 
every laboratory i~I by means of the following definitions: 

g ~ =  {E~s E is true in i for the physical object x} 

gv= {E~gelE is false in i for the physical object x} 
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g ix n d ~ ix = ~ ;  furthermore, Since we adopted a Tarskian truth theory, T F 
~ U ~ F = ~ ,  since the truth value of  every wff of the form E(x) is assigned. 

Physically, these equalities mean that, whenever the physical object x is 
specified in a laboratory i, all physical properties are either true or false 
for x. 

Second, let us introduce, for every state S e 5  r the set gsCge of all 
exact effects such that, for every i eTand  Eegs, pi(S)c_pi(E), and call Es 
the greatest lower bound of  gs.  It follows that gs is the set of  all properties 
that are "certainly true" in the state S, i.e., of  all properties EeSe such that, 
for every laboratory ieT, "S(x) true in i "  implies "E(x)  true in i," whatever 
the interpretation of  the variables may be. In addition, it can be proved that 
Esegs because of  quantum mechanical laws. Thus we can write 

gs = { Ee gelfor every ieL pi(S) ~- p,(E)} 

= {Eegelfor every ieT, (Vx)(S(x)~ E(x)) is true in i} 

={EeeelEs<E} 

Furthermore, for every EegE, let us denote by E • the orthocomplement of  
E in the orthocomplemented lattice (ge,  <) [we have shown in G.91 that 
E l is the unique exact effect such that, for every leT, pi(Et)=Di\pi(E)] 
and for every state S e 6  e let us introduce the set Es  ~ c g e  of  all effects that 
are orthocomplement of  elements in gs.  Then the set 8 s  ~ can be interpreted 
as the set of  all properties that are "certainly false" in the state S, i.e., of  all 
properties E~ge such that, for every laboratory ieT, "S(x) true in i"  implies 
"E(x)  false in i," whatever the interpretation of the variables may be. 3 By 
making use of  some results obtained in G.91, we easily get 

e • {EegelE=Eo ~, E0e •s} 

= {Ee~e[  for every ie[, pi(S) n p i (E)  = ~ }  

= {Eege[  for every ieI, pi(Es) n pi(E) = ~ }  

= {Eed~ every iE]', (Vx)(S(x)--,-n E(x)) is true in i} 

={EegEIE<E~} 

3We define the terms "certainly true" and "certainly false" here bearing in mind the truth value 
"certain," or "true," introduced in the Piron (1976) approach to QP; but these terms denote 
metalinguistic properties of symbols of L and must not be considered truth values in our 
approach. 
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It follows from the above definitions and properties of 8s and ~ s ~ that, 
whenever an interpretation cr of the variables is given, the following (metalin- 
guistic) implication holds for every i t L  x t X ,  St6P: 

S(x) is true in i implies ~ s - - - ~ ,  ~s  lc-~;xv 

Now, the equality sign holds in CP (see G.91), while strict inclusion holds 
in QP because of the aforesaid breakdown of strict causality. Hence, in 
particular, g~ ,  g v  may change in QP whenever the interpretation cr is 
changed in such a way that S(x) remains true. This implies that QP is 
"incomplete," in the sense specified above. 

Our main goals in this section are thus achieved. We adjoin that we call 
the "certainty domain" Ds of the state S t Y  in the following the set Ds = 
gs u g s  ~ , which collects all properties whose truth values are certain in every 
laboratory i~Twhenever the physical object which is being considered is in 
the state S (hence Ds = ge in CP, while Ds C ge in QP), and conclude with 
the following remark on states and properties, which is important whenever 
the problem of the "paradoxes" in QP is discussed. 

Remark 2.1. Whenever S belongs to the set See of pure states, it can be 
shown (see G.91; for brevity, we do not report here the definition of pure 
state in the framework of our approach) that S is the unique state such that, 
for every leT, p~(S) ~_ pi(Es). Therefore the "support" Es of S characterizes 
S if St6ee. However, this characterization must be carefully pondered; in 
fact it must be clearly understood that S and Es do not necessarily have the 
same extension in every laboratory i~T, and that the links between pi(S) 
and pi(Es) are different in CP and in QP. 

Let us consider CP. Here, a "classical physics condition" holds from 
which the following statements can be deduced (see G.91). 

Proposition 2.2. For every i~T, S~Sep, E~ge,  either p~(S)~pi(E) or 
pi(S) c~ p~(E) = ~ .  

Proposition 2.3. For every ie I, S t  ~Sae, pi(S) = pt(Es). 

Proposition 2.2 is intuitively correct in CP; indeed, it means that in 
every laboratory itTall physical objects which are in the pure state S either 
have the property E or they do not. Proposition 2.3 means that, for every 
pure state S and laboratory i~T, Es is true for a given physical object x iff 
x is in the state S, so that S and Es are in some sense interchangeable, and 
every pure state can be identified with a suitable physical property. 

Let us consider QP. Here neither Proposition 2.2 nor Proposition 2.3 
hold because of the breakdown of strict determinism in this theory; instead 
we get that, for every pure state S and laboratory i~7, p~(S) cp~(Es). Hence, 
let S~6ep, i~T; then "S(x) is true in i" [i.e., an interpretation cr of the 
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variables is given such that O'i(x)Epi(S)] implies "Es(x) is true in i" [i.e., 
~i(x)spi(Es)] because of the definition of Es, but the converse implication 
does not hold. Physically this means that a positive answer to the test whether 
the physical object x has the property Es does not imply that x is in the state 
S. Thus, even if Es characterizes S, from a physical viewpoint the state S 
and the property Es cannot be identified in QP. 

3. THE SEMANTIC INCOMPLETENESS OF QP 

We mainly intend to prove in the present section that QP is semantically 
incomplete in a technical sense in logic, which formalizes the intuitive notion 
of incompleteness introduced in Section 2. To this end we will make use, in 
particular, of the reformulation of the basic axioms of QP provided in G.91. 

Let us begin with a brief analysis of the basic epistemological distinction 
between wffs that can be endowed with a truth value, testable wffs, and 
deducible (in the framework of some physical theory) wffs. 

Let L* be a formal language, let O/be the set of all wits of L*, and let 
~- be a physical theory stated in L* (i.e., all axioms and all sets of specific 
assumptions of ~- are wffs of L*). Then two kinds of semantic interpreta- 
tions can be provided which are epistemologically different. The "intended 
physical interpretation" yields a physical model of the formal structure, 
being a complete and direct interpretation of the latter over a domain of 
(theoretical) physical entities. The "correspondence rules" provide a partial 
and indirect empirical interpretation of the formal structure over a domain 
of observative entities (Braithwaite, 1953; Carnap, 1966) (to be precise, the 
correspondence rules provide an interpretation of a part of L*, called the 
"theoretical language" of 9-, onto another part of L*, called the "observ- 
ative language" of Y, which is endowed with a complete and direct interpre- 
tation, in the sense of Tarski, on a domain of observative entities). In both 
cases these semantic interpretations are constructed following some general 
rules (among these, explicitly or not, a model-theoretic semantics, which 
yields a complete interpretation of the logical symbols in L* and defines the 
concept of logical truth) ; they determine, in particular, the subset Vs of all 
wffs in L* which are endowed with a truth value (true or false). In the former 
case (intended interpretation) o/s coincides with the set o/c of all closed wfl's 
of O/ (i.e., the set of all wffs where variables either do not appear or are 
quantified) ; indeed the interpretation is assumed to be complete (and direct). 
In the latter case (interpretation via correspondence rules) o/s is the join of 
the set ~A of all atomic closed wffs that are interpreted via correspondence 
rules and the set of all molecular and quantified wits that can be obtained, 
via formation rules, from atomic formulas in O/A, hence 0/s_ ~'c. 
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Let us come now to the subset of all testable wffs. We have already 
observed elsewhere (Garola, 1991b) that a physical theory determines a 
subset of formulas in its language L* which are considered empirically test- 
able; we have also underlined the epistemological relevance of distinguishing 
the metalinguistic concept of truth from the concept of testability (Garola, 
1992). Thus we introduce the set gtr of all testable wits, which generally 
depends on : - ,  must contain ~A, and is a subset of the set Vs of all wffs 
that can be endowed with a truth value [indeed a truth value is presupposed 
in the very act of testing; see Popper (1969)], but does not necessarily 
coincide with it, so that ~zr~ ~s.4 

Finally, let d be a set of specific assumptions (which can be empty), 
and let us consider the set Vto of all wffs of L* which are theorems following 
from the axioms of Y- and from the wffs in d ;  we call ~'o a set of Y-- 
deducible wffs (briefly, "deducible" wffs whenever the theory Y-- is under- 
stood); furthermore, we call ~' ~ the set of all the negations of wffs of ~o 
and put gte= (Vow ~ )  c~ ~s (hence ~e is interpreted as the set of all wffs 
of L* whose truth value can be predicted within Y whenever the assumptions 
in ,~r are stated). It is apparent that ge  does not necessarily coincide with 
one of the sets ~tr, yrs. We say that Y is t-complete (respectively s-complete) 
with respect to a given interpretation iff a set of assumptions exists such that 
V T ~  Ve (respectively ~ts= V?). 5 Then s-completeness implies t-complete- 
ness; of course, the converse implication is not generally true (yet 
s-completeness and t-completeness coincide whenever an interpretation via 
correspondence rules is given, since Vr---ge implies ~'e = Vs in this case; 
note that this coincidence does not imply that ~'r = gts). 

It is noteworthy that the above formulation of the completeness prob- 
lem allows us to distinguish the "weak" EPR realism from the "strong" 
realism of other authors. Indeed, the former demands, from our present 
viewpoint, that a satisfactory theory be complete in the sense that it not only 
allows us to predict the truth values of all testable wffs of L* whenever 

~ distinction between Vr and ~'s may be rather disconcerting for many physicists, since it 
is a widespread opinion (based on the Copenhagen interpretation of QP and on early neoposi- 
tivistic positions) that only testable statements can be endowed with a truth value in QP. We 
think that a number of  misunderstandings and seeming paradoxes occur because of  this belief, 
and that a clear distinction must be made between the two subsets of  formulas (Garola, 
1992). 

5According to a standard definition of  completeness, a (noncontradictory) theory 5 is said to 
be complete with respect to a given interpretation of  L* iff a set ,~ of assumptions exists such 
that every wff which is true according to the interpretation is a theorem of Y- (which follows 
from the axioms of  Y-- and the assumptions in ,4) .  This definition can be shown to be 
equivalent to our above definition of s-completeness by considering the set ~t s in place of the 
set of  true wits, and the set o f  all theorems and negations of theorems in place of  the set of  
theorems. 
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suitable assumptions are given, but also the truth value of any wff which 
can be obtained by means of logical connectives from atomic wffs which can 
be tested "without disturbing the system"; therefore it requires that suitable 
sets of assumptions exist such that ~ r c  ~p, but not necessarily such that 
~e = ~s- The latter retains that the language of a physical theory must admit 
an intended interpretation, or model, which corresponds to some underlying 
reality, so that every closed wff of L* must be endowed with a truth value; 
hence a satisfactory theory must be complete in the sense that suitable sets 
of assumptions exist such that ~- allows us to predict the truth value of all 
wffs in tgc. Therefore strong realism requires that ~p=  ~s = Igc (usually, it 
is also expected that ~ r  = ~c,  at least in principle). We shall see in the 
following that QP is incomplete in both senses; however, the epistemological 
constraints imposed by "weak" realism are far less restrictive than the con- 
straints imposed by "strong" realism. 

Let us come to the language L. As we have anticipated in the Introduc- 
tion, we will consider L here as an "observative" sublanguage of the broader 
formalized language L* that should be constructed in order to formalize 
completely the natural and mathematical language of physics; of course, L 
is endowed with the empirical interpretation specified in Section 2. In addi- 
tion, we will assume henceforth that an interpretation cr of the (individual) 
variables is given such thaL in every laboratory i~I, every physical object d 
in the domain Di of i is the image of some x e X ,  so that d=  ~yi(x) (by abuse 
of language we call every individual variable a "physical object" in the 
following; see Section 2). Hence, in particular, all (atomic, molecular, quan- 
tified) wffs in L are considered here as closed wffs and are endowed with a 
truth value. 

Let us consider the set of all testable wffs of L. We have seen in Section 
2 that, whenever an interpretation ~ of the variables is given, the truth value 
of every atomic wff of the form S(x), with SEY, is known in every labora- 
tory, while the truth value of every atomic formula of the form E(x), with 
EEr can be a priori unknown, but it can be tested; thus the atomic wffs of 
L either have a known truth value, so that they can be considered testable 
by convention, or are testable in a proper sense of the word. It follows that 
all wffs of L are testable in CP, where simultaneous testability of wffs of L 
is allowed. On the contrary, simultaneous testability can be prohibited in 
QP, so that some molecular formulas are not testable [a trivial example is 
yielded by the conjunction Q ( x ) ^  P(x), where Q and P are interpreted as 
the properties of having a definite value of the coordinate q and of its 
conjugate momentum p, respectively]. Thus, if we still denote by ~T, ~s,  
(for economy of symbols) the set of  all testable wffs of L, the set of all wffs 
of L which are endowed with a truth value, and the set of all wits of L, 
respectively, we have Vr = Vs = ~ in CP and Vtrc gts= ~ in QP. 
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We can now consider the completeness problem with respect to L. This 
problem does not take the canonical form discussed above, since the axioms 
of  CP, or QP, cannot be expressed by means of L, as we have preliminarily 
observed; hence we can only wonder whether in every laboratory a suitable 
set of specific assumptions exists from which the metalinguistic schemes of 
axioms of the theory allow us to deduce as theorems (negations of theorems) 
all true (false) wffs in ~s  = ~, ("s-completeness with respect to L"),  or all 
true (false) wffs in Vzr ("t-completeness with respect to L"). However, it is 
easy to see that the latter case implies the former in L, so that we will 
not distinguish between the two kinds of completeness in the following; 
furthermore, we agree that the expression "with respect to L"  will be 
understood. 

Our treatment of the problem will be based on the following remarks. 

Remark 3.1. We recall from Section 2 that in every laboratory i the set 
of all states induces a partition of the domain D; of i. Therefore we can 
associate to every laboratory iEI a set of specific assumptions d~ = {S(x), 
S'(y) . . . .  } (with x ,y  . . . .  ~X, S, S ' , . . . ~ 5  a) which is such that, for every 
x~X and S~o9 ~, S(x)~r iff cr;(x)Epi(S) [equivalently, S(x) is true in i], so 
that d ;  uniquely specifies the state of every physical object in i. Furthermore, 
whenever S(x) is an assumption in the laboratory i, all wffs of the form 
-qS'(x), with S '~5  e and S ' r  are theorems in i. 

Remark 3.2. Let us consider the wff 

Ar=(7~rX)(S(x)-,E(x))~ with r~[0,1], xeX, S~5 c, EESE 

This formula can be interpreted (in every laboratory iEI) as stating that 
"the physical objects in the state S have the property E with frequency r" 
(the arguments which allow the substitution of probabilistic statements with 
frequency statements in L have been discussed in G.91 and will not be 
recalled here). Therefore Ar exemplifies a canonical form for theorems in L 
following from the metalinguistic schemes of formulas expressing physical 
laws (we recall from G.91, Sections 1.8 and 2.6, that whenever A, is a 
theorem it must be true for every laboratory i~Tand every interpretation of 
the variables). Then, it follows from physical laws, both in CP and in QP, 
that a value r' of r exists such that At. is a theorem, while Ar is the negation 
of a theorem whenever rCr' (see G.91, Definition 2.6.1). 

Remark 3.3. Let Ar be a theorem and let S(x) be an assumption in a 
laboratory i~7. Then, E(x) is a theorem in i if r=  1 ; wE(x) is a theorem in 
i if r = 0 ;  neither E(x) nor wE(x)  is a theorem in i if 0 < r <  1. Indeed, let 
r =  1 ; it follows that Ar=A~ =-(Vx)(S(x) ~E(x))  (see G.91, Proposition 
1.6.1; the symbol -means  logical equivalence here) so that, S(x) being an 
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assumption, E(x) is a theorem in i. Analogously, let r = 0 ;  it follows that 
(see G.91) 

Ar = Ao - - 1  (3x)(S(x) ~ E(x)) - (Vx)(S(x) ~ --7 E(x)) 

so that, S(x) being an assumption, --1E(x) is a theorem in i. Finally, let 
0 < r < 1 ; the hypothesis that Ar is a theorem implies (see Remark 3.2) that 
in every laboratory ieTsome physical objects in the state S have the property 
E, some do not. Then E(x) cannot be a theorem in i if S(x) is an assumption, 
since, if it were, E should be true in i for all physical objects in the state S, 
contrary to our above result. Analogously, --qE(x) cannot be a theorem 
in i. 

Remark 3.4. Whenever a physical object x in a laboratory i~7"is in a 
nonpure state S, there are statements of L regarding properties of  x which 
neither are theorems nor negations of theorems in i (this occurs both in CP 
and in QP). Indeed, let S be a mixture of the pure states St,  $2, �9 �9 �9 with 
nonzero probabilities At, ~2 . . . . .  respectively (in symbols, S =  ~k ~t'kSk) and 
let Es~ be the exact effect which characterizes the pure state Sk according to 
our definitions in Section 2. Then it follows (see G.91, Proposition 2.6.2) 
that the wff (rc~x)(S(x) ~Esk(X)) is a theorem, with 0</~k< 1, By making 
use of Remark 3.3 we conclude that neither Es~(x) nor ~Esk(X) can be 
theorems of  the theory whenever S(x) is an assumption, which proves our 
statement. However this kind of  "incompleteness" can be charged to the 
assumptions, not to the basic laws of the theory, since nonpure states are 
usually retained to yield an incomplete information on physical objects. 

Let us come now to the completeness problem in CP. Let us consider 
a laboratory i~i"and an assumption S(x), with S a pure state. Then we recall 
that Proposition 2.2 in Remark 2.1 holds in CP. It follows that, since S~ Ye ,  
the wff Ar in Remark 3.2 can be a theorem only if r =  1 or r = 0, hence either 
A j or A0 is a theorem because of the same remark. By making use of Remark 
3.3, we conclude that all atomic formulas of the form E(x), with E~ge,  are 
either theorems or negations of theorems in i. In addition, all atomic for- 
mulas of  the form --qS'(x), with S'~,9 ~, S ' ~ S ,  are theorems of  the theory 
in i because of Remark 3.1. We conclude that all atomic wits of L where x 
appears are either theorems or negations of  theorems in CP whenever x is 
in a pure state. Thus, bearing in mind Remark 3.4, we conclude that CP is 
a complete theory according to our above definition of  completeness. 

Let us turn to the completeness problem in QP. Because of Remark 3.4, 
we can restrict ourselves again to considering pure states only, but Proposi- 
tion 2.2 in Remark 2.1 does not hold in QP; on the contrary, for every S~Se e, 
an effect E ~ F .  certainly exists such that the wff Ar = Orrx)(S(x) ~ E(x)) is 
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a theorem of  the theory with 0 < r < 1 (this is a consequence of  the "break- 
down of  strict causality" that we have discussed in Section 2). It follows 
from Remark 3.3 that neither E(x) n o r - q E ( x )  is a theorem of  the theory 
in a laboratory i~Twhen S(x) is an assumption in i. Thus, we conclude that 
QP is semantically incomplete (since all wffs of L of the form Ar are either 
theorems or negations of  theorems in QP, as we have seen in Remark 3.2, 
we can say that QP is incomplete with respect to "individual physical state- 
ments" while it is complete with respect to "statistical physical statements"). 

Our main goals in this section are thus achieved. However, our analysis 
can be further improved, as follows. Let us consider a state S e 6  e and let us 
bear in mind our definitions of  gs ,  ~ ,  and Ds in Section 2. Whenever S(x) 
is an assumption of the theory, it can be easily proved, by making use of 
Remarks 3.2 and 3.3, that the wff E(x) is a theorem if Eegs, the negation 
of  a theorem if E e g s  ~ , and neither a theorem nor the negation of  a theorem 
whenever EESe\Ds. This shows that, whenever the physical object x is in 
the state S in a laboratory iEL the theory allows us to determine all proper- 
ties which are "certainly true" or "certainly false" for x, but does not allow 

T for the determination of  the sets 8 ix \~s  and v • fx\g s (we say that the proper- 
ties in v V �9 (gix\gS) U (gL~\gS)= ge\Ds are "indeterminate"6). This result sug- 
gests that a state S can be "compatible" with a state S'  in the intuitive sense 
that they can yield noncontradictory information; this occurs whenever 
every property which is certainly true (false) in S either is certainly true 
(false) or indeterminate in S'.  Thus we introduce a binary "compatibility" 
relation C on the set of all states, defined as follows: 

fo revery  S,S'ESe, S C S '  iff g s n g ~ , = ~ = g ~ n g s ,  

It is apparent that C is reflexive and symmetric, that is, it is an access- 
ibility relation (it must be stressed that it is not necessarily transitive). We 
do not intend to discuss this relation in the present paper in detail; we 
only consider the following particular cases, which are interesting from an 
epistemological viewpoint. 

(i) Every nonpure state S = ~k AkSk (see Remark 3.4) is compatible with 
every pure state Sk that occurs in its decomposition (indeed, gs  = (']k gSk, 
hence g s  l Nk l = r sk, so that Cs n 8 sik = ~ = 8 ~ n ~s~). 

61t could be objected that QP provides information on E even if E~gE\Ds, since it provides 
the frequency r (with 0 < r < 1) which makes the wff Ar = Qrrx)(S(x) ---' E(x)) true (see Remark 
3.2); indeed, this is the basic idea underlying some kinds of "fuzzy logics" for QP (see G.91 ), 
where probability values are taken as truth values in the full sense of the word. We think that 
the non-Tarskian truth theory underlying these logics is not adequate to formalize the concept 
of  truth in the natural languages (hence, in the primary language of physics) from several 
viewpoints, and the aforesaid information on E is expressed in our framework by the metaling- 
uistic statement that A r is a theorem in QP. 
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(ii) Whenever S and S' are pure states, they are compatible iff they are 
not preclusive in the sense established in G.91. More explicitly, let ~ be the 
preclusion relation between pure states defined as follows: 

for every S, S'e6ee, Sr iff 

for every i~L pi(S) n p~(Es,) =J~ 

Then we get 

for every S, S'Eowe, S C S '  iff S # S '  

The proof of  this statement can be easily obtained by proving first 

for every S, S' e 6ap , S C S' iff Es < E ~, and Es, < E ~ 

Let us comment briefly on the above results. 
From a physical viewpoint, statement (i) says that any "incomplete 

information" on the physical objects, summarized in a nonpure state S, can 
be refined without introducing contradictions between the predictions of the 
theory (let it be CP or QP) before and after the refinement. This is a reason- 
able requirement, which is expected to hold in every physical theory. 

More importantly, statement (ii) shows that the relation C, though 
introduced because of independent physical arguments, immediately reduces 
(on the set of pure states) to the negation of the relation -~, which translates 
a standard concept in physical theories into our framework. In particular, 

coincides with the relations r of "being different" in CP, so that the pure 
states S and S' are compatible iff S=  S' (equivalently, different pure states 
never can be compatible in CP) ; this is rather intuitive if we recall that Ds = 
ge in CP whenever S is a pure state, so that no property of x is "indetermin- 
ate" if S(x) is an assumption. Furthermore, in the Hilbert space model of 
QP, the pure states S and S' are preclusive (i.e., they are in the relation ~ )  
iff they are represented by orthogonal vectors (see G.91, Section 2.2), so 
that we have that S C S' iff S and S' are represented by nonorthogonal 
vectors. Thus we obtain a simple criterion which allows us to decide whether 
the information carried by two different pure states is noncontradictory in 
QP: a contradiction occurs iff the states are represented by vectors which 
are orthogonal. 

4. SOME REMARKS ON MEASUREMENTS AND PARADOXES 

We intend to comment briefly in the present section on some applica- 
tions to measurements and paradoxes of our definitions and results in 
Sections 2 and 3. 

(i) Let us consider a typical (pure, first-kind, ideal) quantum measure- 
ment of an observable A on a physical object x in the pure state S. Let a, ,  



Semantic Incompleteness of Quantum Physics 823 

a2 be possible outcomes (i.e., outcomes whose probability is not zero in the 
state S) and let Sj, $2 be the corresponding pure states after the measure- 
ment. Then, S C Si and S C $2 in QP, where the measurement satisfies the 
projection postulate, while S, ~ $2, hence Sl r $2 (see our last statement in 
Section 3). Physically S C Sl and S C $2 mean that in this kind of measure- 
ment the initial information about the physical object does not conflict with 
the information that we obtain by means of the measurement (so that we 
can attribute the obtained outcome to the object both prior and after the 
measurement). On the contrary, Sl ~$2 means that different outcomes 
necessarily lead to noncompatible information. Let us show that this is not 
counterintuitive. Indeed, x in Si implies that the property Ej, interpreted as 
"A has value a~ ," is certainly true, while x in $2 implies that the property 
E2, interpreted as "A has value a2," is certainly true. Now, El and E2 are 
mutually exclusive (indeed E2 < E~), but El and E2 are indeterminate in the 
state S, so that no prediction of the truth values of El (x) and E2(x) can be 
made before the measurement in QP (of course no such situation may occur 
in CP, since one outcome only is allowed and the state may be assumed to 
remain unchanged during the measurement). 

(ii) Let us consider the (pure, first-kind, ideal) quantum measurements 
of two noncommo.ting observables A and B that can be performed on a 
physical object x in the state S (for simplicity, we assume here that S is a 
pure state), let a, b, respectively, be possible outcomes, and let So, Sb be the 
corresponding pure states after the measurements. Whenever So and Sb are 
represented by nonorthogonal vectors, So C Sb; since S C So and S C Sb 
because of (i) above, the states S, So, Sb express compatible information in 
this case. 

The situation discussed in (ii) occurs in the EPR experiment, which 
many physicists believe exhibits some kind of paradox in QP. Here, the 
physical object consists of a two-particle system and the state S is a common 
eigenstate of two commuting observables Q and P, such that Q= Q~- Qp 
and P=  P~ + Pa (where Q,, Qp denote the position and P~, Pa the momen- 
tum of particles a, fl, respectively; of course, [Q~, P~] ~ 0 ~ [Qp, Pp]). Then, 
the quantum measurements which are considered consist of the measure- 
ments of Q~ and P~. Let us denote by q and p, respectively, two possible 
outcomes of Qo and P~; by Sq, Sp the corresponding states of the whole 
system after the measurement; and by [~q), [gtp) the vectors which represent 
these states in the Hilbert space of the system. It is well known that Ilgq) 
can be expressed as the tensor product of the vectors [~z~q) and I~'pq), which 
represent the states Saq and S~, respectively, of particles a and fl after the 
measurement of Q~ ; analogously, [~,p) can be expressed as the tensor pro- 
duct of the vectors 1 ~ )  and [~'~), which represent the states S,~ and 
S~, respectively, of particles a and fl after the measurement of P , .  It is 
easy to see that Or Hence we get Sq CSp, 
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and also S~, C S~p and So, C Sap. This means, according to our interpretation 
in Section 3, that the information in the states of  particles a and fl after a 
position measurement of  a does not conflict with the information in the 
states of  particles a and fl after a momentum measurement of  a. Thus we 
conclude that the analysis of  the EPR argument does not lead to counterin- 
tuitive results in our interpretation, nor to violations of basic epistemological 
requirements regarding physical theories (it trivially does not lead to anti- 
nomies in QP); then, using our definition of  paradox in footnote 2, we 
conclude that no paradox occurs in the original EPR experiment, nor follows 
from it. 
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